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Abstract Symmetry classification for a system of differential equations can be achieved algorithmically by
applying a differential reduction and completion algorithm to the infinitesimal determining equations of the system.
The branches of the classification should be invariant under the action of the equivalence group. We show that such
invariance can be tested algorithmically knowing only the determining equations of the equivalence group. The
method relies on computing the prolongation of a group operator reduced modulo these determining equations. The
method is implemented in Maple: a novel pivot selection strategy is able to guide the rifsimp command towards
more favourable branchings.

Keywords Differential equations · Differential reduction · Equivalence transformation ·
Symmetry classification

1 Introduction

Symmetry methods for partial differential equations (PDEs) are one of the outstanding tools in the arsenal of
modern applied mathematics. Analysing a PDE system E for its symmetries is by now a widely known process,
complete with textbooks [1–3] and computer packages [4–6]. In this paper we shall be concerned with symmetry
classification for PDEs, which is more ambitious. Rather than a specific PDE E , one attempts to deal with a whole
family C of them at once. The family C is parametrised by certain constants or functions, which we collectively
call arbitrary elements. The problem is to describe the symmetries of each member of the class. By doing so, one
hopes to identify assignments of arbitrary elements that are physically realistic and have symmetries that permit
solving useful boundary-value problems.

Some hundreds of pages of classifications for PDEs are collected in [7], and many more DE systems have
subsequently been classified [8–11]. Such problems have been dealt with by a variety of methods, starting with
Lie [12], and based on analysis of the infinitesimal determining equations for the symmetries. Ovsiannikov [3]
further developed Lie’s method, so that it is sometimes described as the ‘Lie–Ovsiannikov’ method [9]. Other more
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geometric methods exist [8, 13, 14], [15, Chap. 10], but there is no single dominant method: the candidates suffer
variously from not being geometric, or not algorithmic, or being algorithmic but overwhelmed by expression swell
on difficult problems, or of producing only partial results. In this paper we shall be concerned with an algorithmic
enhancement of the Lie–Ovsiannikov infinitesimal method.

An approach that has met some success is to apply a differential reduction and completion (DRC) algorithm
to the symmetry determining system S. This was described by Reid [16] and applied by him using his rif algo-
rithm (‘reduced involutive form’). However, other methods such as the Ritt–Wu method or the Rosenfeld–Gröbner
algorithm of Boulier, et al. [17] can equally well be used. A drawback of such methods is that expression swell
can overwhelm the calculation. A second, related issue is that the method takes no account of the transformation
properties of the PDEs.

Much of the algebraic complexity arising during DRC is due to degrees of freedom present due to the action of
the ‘equivalence group’ � of the class C of PDE. This is a group � of point transformations that maps members
of C to members of C [3, Sect. 6.4], [18–20]. The equivalence group can be used for parameter removal after
classifying symmetries. Throughout the CRC Handbook, Ibragimov [7, Part B] uses the equivalence group in this
way to clarify and simplify group analyses. Many other authors also use the equivalence group action to assist in
symmetry classification [8,13,21].

The equivalence group action on arbitrary elements naturally partitions them into equivalence classes. Two equa-
tions E1, E2 ∈ C connected by a transformation from � have symmetry groups that differ only by a change of
coordinates. When classifying symmetries it is therefore natural to insist that equations that are �-equivalent should
be in the same grouping in the symmetry classification.

Reid’s method [16] when applied to symmetry classification can perform well on moderately complex classifica-
tions (perhaps two or three arbitrary functions of a single variable). However, because the method knows nothing of
the equivalence group �, it can sometimes split into classes that are not �-invariant. The rifsimp implementation
in Maple [22] allows different preferences for desirable case splits, such as smallest ‘pivot’ expression, smallest
equation, and the like. However, in a symmetry classification, such considerations should be subordinate to the
desired �-invariance.

One resolution of this is to perform the entire symmetry calculation in a �-invariant way. Lisle and Reid [10]
describe one such method for achieving this: the symmetry operators are written with respect to a �-invariant basis
of (non-commuting) differential operators, casting the determining equations into �-invariant form. All subsequent
DRC steps are automatically invariant, and a good deal of the algebraic complexity evaporates. Following Fels and
Olver [23,24], there are by now quite slick mechanisms for carrying out geometric calculations in an invariant way,
and invariant forms of DRC algorithm have been developed [25,26].

The starting point for such invariant methods is an explicit parametrisation of the equivalence group, and this
may not be available algorithmically. In contrast Reid’s (non-invariant) method is completely algorithmic, uses
computer algebra tools that are by now standard, and requires little guidance from the user. There is hence still
considerable appeal in this original approach. In this paper we exhibit a modified version of Reid’s method that
allows DRC branchings to be queried for the desired invariance properties in an entirely algorithmic way, using
only differential reduction and completion. This enables us to develop revised branching strategies that can for
instance choose the smallest invariant pivot (when one is available), and hence give better structured symmetry
classifications from DRC. Our method does not require knowledge of the equivalence group, nor even of its vector
fields: instead it works at the level of determining equations.

2 Mathematical background

2.1 Symmetries of differential equations

Consider a system of s differential equations (DEs) of order k ≥ 1

f l(x, u, u(1), . . . , u(k)) = 0, l = 1, . . . , s, (1)
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where x = (x1, . . . , xn) are n independent variables and u = (u1, . . . , um) are m dependent variables. The ‘jet
variables’ u(k) represent values of k-th derivatives

u(k) = {u j
I , 1 ≤ j ≤ m, I = [i1 · · · ik], 1 ≤ ia ≤ n} (2)

with I an unordered k-tuple. We write |I | = k for the order of I . Let

E = { f 1, . . . , f s} (3)

denote the left hand sides of the DEs. We distinguish carefully between E (a set of polynomials in the jet variables)
and the jet variety

V(E) = {(x, u, . . . , u(k)) ∈ J k | f l(x, u, . . . , u(k)) = 0},
which is a set of points in jet space. We shall assume that E contains no 0-th order equations (algebraic equations
f (x, u) = 0).

The problem of finding sufficient conditions for point symmetries of E is a standard one [1, Sect. 4.3.1], [2, Sect.
2.3], [3, Sect. 5.3]. The starting point is a formal operator on base (x, u)

X =
n∑

i=1

ξ i ∂

∂xi
+

m∑

j=1

η j ∂

∂u j
(4)

(with ξ i , η j depending on (x, u)), with its formal prolongation to jet variables

X(k) =
n∑

i=1

ξ i ∂

∂xi
+

m∑

j=1

η j ∂

∂u j
+

∑

1≤|I |≤k

η
j
(I )

∂

∂u j
I

, (5)

where at this stage all ξ i , η j , η
j
(I ) are just symbols. The symmetry procedure is as follows:

1. Apply the operator X(k) to DEs E to form

X(k)E = {X(k) f 1, . . . , X(k) f s} (6)

2. Reduce the expressions X(k)E modulo the prolongation relations

pr =
{

η
j
(I i) − Dxi η

j
(I ) +

n∑

l=1

u j
I l Dxi ξ

l , 0 ≤ |I | < k

}
, (7)

where Dxi is a total derivative operator and for order 0, η
j
( ) is identified with η j . This reduction amounts to

substituting out the prolongation components η
j
(I ) in terms of derivatives of ξ i , η j . The resulting set of expres-

sions will be denoted by X(k)
pr E ; each is linear homogeneous in ξ i , η j and their derivatives, with coefficients

that are polynomial in the jet variables (x, u, . . . , u(k)).

3. Restrict X(k)
pr E to the variety V(E): we shall denote this by X(k)

pr E
∣∣V(E) . This is usually achieved by isolating

derivatives from each equation of E and substituting them out.

Steps 1 and 2 may be done in either order, in the sense that operator X(k) (5) can be reduced mod pr (7) before
being applied to E .

Depending on one’s purpose, one may use the expression X(k)
pr E

∣∣V(E) to answer either of two questions:

Construction The question of finding all point symmetries of E is answered by setting X(k)
pr E

∣∣V(E) to 0 and

decomposing by powers of the jet variables u j
I of order |I | ≥ 1 to obtain a set of linear homogeneous

partial differential equations for the infinitesimals ξ, η, the symmetry determining system S. Solving
S for ξ, η then gives the symmetry operators.

Decision This is the question whether a vector field X is a symmetry of E . For this one simply checks whether
X(k)

pr E
∣∣V(E) is 0.

We shall need a variant of the decision problem for which Steps 2 and 3 above must be recast.

123



204 I. Lisle, S.-L. T. Huang

For the symmetry procedure to be algorithmic, it must be specified how step 3. is to be done. This will require
some assumptions on E to ensure it satisfies a constant rank condition [2, Sect. 2.3]. The reason for our stipulation
that E contain no 0-th order equations is that the invariance condition would then no longer give determining
equations as PDEs, and standard methods are blocked.

2.1.1 Example 1 Consider ‘the’ nonlinear heat equation

ut − (K (u)ux )x = 0, (8)

which is really a class of PDEs parameterised by K (u) �= 0, and let the symmetry operator be

X = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
, (9)

where ξ, τ, η depend on (x, t, u). The above method gives symmetry system S [1,3]

ξu = τu = τx = 0, Kηxx − ηt = 0, 2ξx − τt − Ku

K
η = 0,

2ηxu − ξxx + 2
Ku

K
ηx − 1

K
ξt = 0, ηuu + Ku

K
ηu + K Kuu − K 2

u

K 2 η = 0. (10)

2.2 Algorithmic symmetry classification

Modern symmetry packages [5,27,28] deal with symmetry determining equations S in three stages: construct S
(see Sect. 2.1); reduce and complete S using a differential reduction and completion (DRC) algorithm; solve S.
Solving is not algorithmic, but the first two stages are, and it is of considerable interest to extract as much information
as possible about symmetries without solving S. A DRC algorithm casts a DE system into a form where a local
existence-uniqueness theorem can give a clear correspondence between the DEs and their solutions; reaching this
form uses only differentiation and polynomial algebra. Properties such as dimension of solution space [16] and
(in the case of symmetry determining equations) structure constants of the Lie symmetry algebra [29] can then be
found without solving the DEs.

There are several practical variants of DRC algorithms. Riquier–Janet theory [28,30], [31, Sect. 2.2] applies to
linear PDE, such as symmetry determining equations. Unfortunately, determining systems for symmetry classifi-
cation contain not just the infinitesimals ξ, η (which occur linearly), but a second category of dependent variable,
namely the arbitrary elements a. For example in system (10), diffusivity K occurs nonlinearly. Hence a fully non-
linear DRC theory is needed. Such theories include the rif (reduced involutive form) of Reid and Wittkopf [16,22]
and the Rosenfeld–Gröbner algorithm of Boulier et al. [17].

The structure that is desired for the determining equations S after DRC is that S contain a subsystem for the
arbitrary elements a, with the rest of the equations being linear in the infinitesimals ξ, η. We define the following
notation:

Definition 2 Let � be a subset of the set of dependent variables in a DEs system, and let �̄ be its complement. We
write � � �̄ if every derivative of each θ ∈ � is ranked lower than every derivative of each θ̄ ∈ �̄.

Such an elimination ranking has the property that it forces out a subsystem for the lower ranked variables �.
Thus in S a ranking for which {a} � {ξ, η} will ensure that S has the desired structure. Examples applying rif to
symmetry classification are given in [16,22].

2.2.1 Example 3 Consider the symmetry determining the equations of (10) for the nonlinear heat equation, and
choose a ranking in which {K } � {ξ, τ, η}. For a wide variety of rankings, rif case splits on the three expressions

p1 = Ku, p2 = 4K Kuu − 7K 2
u , p3 = K Ku Kuuu + K 2

u Kuu − 2K K 2
uu . (11)
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One leaf of the resulting classification tree is for instance

Ku �= 0, 4K Kuu − 7K 2
u = 0,

ξt = ξu = τx = τu = ηt = ηxx = 0,
(12a)

ξxx = 1

2

Ku

K
ηx , τt = 2ξx − Ku

K
η, ηu = −3

4

Ku

K
η. (12b)

Classifying system (12a) shows this is a two-parameter family of K (u), while (12b) shows that a 5-dimensional
symmetry algebra is admitted by (8) for these K . Equation 12a can be solved to find K (u) = K0(u − b)−4/3 (with
K0 �= 0) but this is not required to achieve classification.

The Rosenfeld–Gröbner algorithm [17] may instead be used, but the ideas and results are similar. The advantage
of such methods is that they cleanly separate symmetry classification (achieved algorithmically using DRC) from
finding symmetries (which requires solving PDE).

2.3 Equivalence Group

A class of differential equations has an associated collection of transformations which map DEs to DEs in the class
C . The equivalence group [3, Sect. 6.4], [32], [33, Chap. 2] (or ‘structure invariance group’ [31, Chap. 4]) is the
set of those transformations which act as point transformations on the space (x , u, a) (where a are coordinates
representing the arbitrary elements) and which map every member of C to a member of C . This group is useful for
parameter removal: the Handbook [7, Part B] uses it systematically in presenting results of symmetry classifications.

2.3.1 Example 4 For the class of nonlinear heat equation (8), the equivalence group acts as point transformations
on (x, t, u, K ); the corresponding operators are

Y = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
+ κ

∂

∂K
, (13)

where ξ, τ, η depend on (x, t, u), while κ depends on (x, t, u, K ). The equivalence group in this case represents
degrees of freedom relating to choice of origin and of units for length, time and temperature. It establishes the
equivalence

K (u) ↔ 1

K0
K (au + b), K0 �= 0, a �= 0,

where K0, a, b are arbitrary constants.
Following [3, Sect. 6], [32], the method for finding equivalence operators is analogous to finding symmetries.

Starting with the operator

Y =
n∑

i=1

ξ i ∂

∂xi
+

m∑

j=1

η j ∂

∂u j
+

p∑

l=1

αl ∂

∂al
, (14)

where ξ i , η j depend on (x, u) and αl depend on (x, u, a), one constructs a system Q of determining equations for
the infinitesimals ξ, η, α. We shall call Q the equivalence system.

2.3.2 Example 5 For the nonlinear heat equation (8), the equivalence operator Y (13) is found to have infinitesimals
ξ depending on x ; τ on t , η on u, and κ on K , and obeying the equivalence system Q

ξx = 1

2
τt + 1

2

1

K
κ, τt t = 0, ηuu = 0, κK = 1

K
κ. (15)
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The equivalence group � plays a central role in clarifying and simplifying symmetry classification. Unfortunately,
the rif DRC algorithm applied to symmetry classification (Sect. 2.2) knows nothing of �. An undesirable feature
in this case is that rif may choose branchings that are not �-invariant; in this case two equations known to be
equivalent appear in different branches of the classification.

Methods such as described by [10,25,26] can perform symmetry classification using DRC with respect to a
noncommuting basis of differential operators. The symmetry system is written in invariant form by choosing the
operators to be invariant under the equivalence group �. To compute invariants, one assumes there is an explicit
parametrisation of �. In this paper we take a different approach. We not only work infinitesimally, we do not even
assume that the equivalence operators (14) are known. Instead, our method uses the equivalence system Q to assist in
performing DRC on the symmetry system S. This has the advantage of being completely algorithmic and requiring
no explicit solution of DEs, and no explicit parametrisation of groups.

3 Symmetry classification with invariance

Because branchings in a symmetry classification should be �-invariant, this implies that all transformations in the
equivalence group � should be symmetries of the branching conditions. Our goal is to show how to check whether
a given branching condition is �-invariant directly from the determining equations for �. By doing this we can
guide the rif algorithm towards more desirable branchings. To achieve this goal careful reassessment of the standard
symmetry method described in Sect. 2.1 is needed.

3.1 Symmetry condition

Consider step 3 of the symmetry procedure described in Sect. 2.1, namely “restricting to the variety V(E)”. For DE
systems arising in physics or engineering it is usually adequate to do this by isolating a derivative from each equa-
tion in E and substituting it out. Experience with the Maple rifsimp DRC package showed this to be inadequate
for our purposes. Case splitting conditions arising during a symmetry classification can be highly nonlinear (e.g.
y(y′′′)2 + y′y′′y′′′ + (y′′)3 = 0). In this case ‘isolating the leading derivative y′′′’ is not algebraically achievable.
And consider the following example, where the equation is ‘leading linear’, yet isolating the leading derivative
gives incorrect results.

3.1.1 Example 6 Consider the DE

E = 0, where E = {yxx (zxx + z)} (16)

with solutions

{y = ax + b, z = g(x)} ∪ {y = h(x), z = c sin x + d cos x}. (17)

Seek a symmetry vector field X = ξ ∂
∂x +η ∂

∂y + ζ ∂
∂z , where to cut down expression size we stipulate that ξ depends

on x , η on (x, y) and ζ on (x, z). Applying the method of Sect. 2.1 gives

X(2)E = (zxx + z)η(xx) + yxxζ(xx) + yxxζ (18)

and after reducing mod prolongations (7):

X(2)
pr E = (zxx + z)

(
ηxx + 2 yxηxy − yxξxx + yxxηy − 2 yxxξx + y2

x ηyy

)

+yxx

(
ζxx + 2 zxζxz − zxξxx + z2

xζzz + zxxζz − 2 zxxξx

)
+ yxxζ. (19)

Attempting to restrict to the variety V(E) by ‘substituting out the leading derivative’ (e.g. set yxx = 0) gives
determining equations whose solutions incorrectly include operators like x ∂

∂x which are not symmetries of E

(16). For instance the solution (17) y = ex , z = cos x is mapped by the scaling group generated by x ∂
∂x to
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y = eax , z = cos ax , which is not a solution for a �= ±1. The fact that different ‘symmetries’ are found if zxx

is chosen as the leading derivative of E also indicates something seriously amiss. The example may appear arti-
ficial, but case splitting conditions of this kind do arise when using rifsimp. The cause of the difficulty is that
‘substituting out the leading derivative’ restricts to an incorrect variety.

The question of whether an expression vanishes on an algebraic variety V(E) is a staple of commutative algebra
(see e.g. [34, Chap. 4]). Let the ideal generated by E be denoted by I(E). If I(E) is radical, the question is answered
algorithmically by reduction modulo a Gröbner basis for I(E). If I(E) is not radical, a basis for the radical of I(E)

can still be found algorithmically [35, Sect. 4.5]. (Methods using the idea of characteristic sets (e.g. [17]) can do
more in this direction.)

Assuming that I(E) is radical, step 3 of the symmetry method of Sect. 2.1 can therefore be replaced by

3.′ Restrict X(k)
pr E to the variety V(E) by reducing all the polynomial coefficients modulo a Gröbner basis I(E)

with respect to a ranking (Definition 2) in which {u} � {u(1), . . . u(k)}.
The reason for the restriction on ranking is that ξ, η may depend on (x, u) but not on derivatives. Conveniently, a

Gröbner basis in such a ranking will exhibit a basis for any algebraic equations f (x, u) in I(E), enabling algorithmic
checking of the assumption made in Sect. 2.1 that I(E) contain no algebraic equations.

3.1.2 Example 6 (cont.) Note that DE E (16) generates a radical ideal. Applying step 3.′ amounts to taking remainder
on division by yxx (zxx + z), which gives

X(2)
pr

∣∣V(E) = zηxx + yx (2 zηxy − zξxx ) + y2
x zηyy + yxx (ζxx + ζ + 2z ξx − zζz)

+zxxηxx + zx yxx (2 ζxz − ξxx ) + yx zxx (2 ηxy − ξxx ) + z2
x yxxζzz + y2

x zxxηyy .

Decomposing by powers of derivatives and solving the resulting determining equations gives the correct list of
symmetries of E , (16)
∂

∂x
,

∂

∂y
, x

∂

∂y
, y

∂

∂y
, sin x

∂

∂z
, cos x

∂

∂z
, z

∂

∂z
,

all of which map solutions (17) to solutions.

3.2 Invariance checking

Before proceeding to our main purpose of symmetry classification, we first address a subsidiary question. For a
differential equation E , we may be interested in finding all point symmetries of E , but there are circumstances
where we wish to consider only those point symmetries from a specified (pseudo-)group G. The infinitesimals of
G are specified by a system of determining equations D. (In the sequel, D will be the equivalence system.)

3.2.1 Example 7 Consider the DE yxx = 0 (so that E = {yxx }) and suppose that rather than all point symmetries, we
seek only conformal symmetries of E . Thus the operator X = ξ ∂

∂x + η ∂
∂y is to have infinitesimals ξ, η (depending

on (x, y)) that satisfy the Cauchy–Riemann equations

D = {ηy = ξx , ξy = −ηx }. (20)

This example immediately suggests a solution: set up the point symmetry system for E , then append relations D
to it. However, this is not well-suited to our purposes in Sect. 3.3, and we instead give an adjusted procedure that
avoids construction of the point symmetry system.

Suppose that symmetry vector fields are being sought in a group of point transformations specified by deter-
mining equations D. We seek to adjust the symmetry method of Sect. 2.1 so that at step 2 we take account not
only of the prolongation relations pr (7) but also the specified determining system D. Both pr and D are linear
homogeneous partial differential equations for the components of the prolonged vector field. Specify a derivative
ranking (Definition 2) such that

{ξ, η} � {η(1)} � · · · � {η(k)} (21)
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(where again the components of ξ, η, . . . , η(k) are symbols). When a DRC algorithm is applied to the combined
system pr ∪ D, such a ranking ensures

i. that determining system D (which involves only ξ, η and derivatives) still appears as a subsystem.
ii. that the prolongation relations pr (7) act as substitution rules that eliminate the prolongation components η(1),

…, η(k) in favour of expressions in terms of ξ, η and derivatives.

3.2.2 Example 7 (cont.) Choose a ranking for which

{ξ, η} � η(x) � η(xx)

and apply the rif algorithm [16] to pr ∪ D (7),(20)

{ηy − ξx , ξy + ηx , η(x) − ηx − yxηy + yxξx + y2
x ξy,

η(xx) − η(x) x − yxη(x) y − yxxη(x) yx + yxxξx + yx yxxξy
}
,

where we break ties by ranking x-derivatives lower than y-derivatives. The rif -form redpr of the combined system
is

redpr = {ηy − ξx , ξy + ηx , η(x) − (1 + y2
x )ηx , η(xx) − (1 + y2

x )(ηxx + yxξxx ) − 3yx yxxηx + yxxξx }. (22)

The last two expressions in particular define prolongation formulas adapted to conformal vector fields. With this,
step 2 of the symmetry procedure of Sect. 2.1 is adjusted to the following. Given system of DEs E and determining
equations D for the infinitesimals of some group of point transformations, precompute the rif -form redpr of pr ∪D
as described above. Let the rif -form of D be denoted by Dred.

2′. Reduce the expressions X(k)E modulo the rif -form redpr of pr ∪D. This reduction amounts to substituting out
the 0-th order principal derivatives from Dred in favour of parametric derivatives. (This includes substituting out
the prolongation components η

j
(I ).) The resulting set of expressions will be denoted by X(k)

redpr E ; each is linear

homogeneous in the parametric derivatives of ξ i , η j , with coefficients that are polynomial in the jet variables
(x, u, . . . , u(k)).

The expressions X(k)
redpr E

∣∣V(E) that result from steps 1, 2′, 3′ can be used similarly to before:

Construction To construct all symmetries of E from the group defined by D, set X(k)
redpr E

∣∣V(E) to 0, decompose by

powers of the jet variables u j
I of order |I | ≥ 1 to obtain additional determining equations. Append

these to D to get the symmetry system S of E .
Decision The question whether all solutions of determining system D are symmetries of E can be answered

by checking whether X(k)redprE
∣∣V(E) is 0.

3.2.3 Example 7 (cont.) Write the formal prolonged operator

X(2) = ξ
∂

∂x
+ η

∂

∂y
+ η(x)

∂

∂yx
+ η(xx)

∂

∂yxx
.

Applying the modified symmetry procedure, we have

1. X(2)E = {X(2)yxx } = {η(xx)};
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2′. Reduce X(2)E mod redpr (22) to get

X(2)
redpr E = {(1 + y2

x )(ηxx + yxξxx ) + 3yx yxxηx − yxxξx };
3′. Reduce mod the Gröbner basis E = {yxx } to get

X(2)
redpr E

∣∣V(E) = {(1 + y2
x )(ηxx + yxξxx )}.

The fact that this expression X(2)
redpr E

∣∣V(E) is nonzero indicates that not all conformal transformations are sym-
metries of yxx = 0. Construction of the conformal symmetries of yxx = 0 is achieved by breaking down by powers
of yx to get ηxx = 0, ξxx = 0. These, along with the Cauchy–Riemann equation (20) constitute the determining
equations of the conformal symmetries of yxx = 0. Notice that this procedure allows one to check the invariance
of DE system E under group G without knowing G, nor even the vector fields generating G—just the infinitesimal
determining equations of G.

For symmetries of a single system of DEs E , the above procedure has only minor advantages over the simplistic
one of appending D to the point symmetry system of E . However, when multiple systems E1, E2, . . . are being
analysed for invariance under the same group G, there is a major gain, because the reduced prolongation relations
are precomputed, and can be reused on each system. For each system El , step 1 is just differentiation of El , while
the ‘reduction’ of step 2′ amounts to simple substitution from the reduced prolongation relations. Hence it is only
step 3 (reduction mod E) that is potentially expensive, especially when E is complicated. For our application to
symmetry classification using rif even this expense is modest: El is a single equation so ‘reduction mod E’ is
computing remainder on division by a single polynomial.

3.3 Classification with invariance checking

All the pieces are now in place to test branchings in a symmetry classification for invariance. Starting with a
system E of differential equations involving arbitrary elements a, derive determining equations Q for the equiv-
alence transformations. Then execute a differential reduction and completion (DRC) algorithm on the symmetry
system S.

In the simplest version, branchings of the DRC algorithm can be tested after the fact for invariance under Q. We
sweep through the tree, testing the many case splitting conditions for invariance with respect to the same Q.This is
where the comments about efficiency at the end of Sect. 3.2 become significant.

3.3.1 Example 8 Consider the equivalence group (Example 5) of the nonlinear heat equation (8) as projected onto
action on u, K . The operator is Y = η ∂

∂u + κ ∂
∂K where η depends on u and κ on K ; the determining equations are

ηuu = 0, κK = 1

K
κ. (23)

This system is in rif form. Applying the theory of Sect. 3.2, we find reduced prolongations mod Q:
{
κ(u) − Ku

K
κ + Kuηu, κ(uu) − Kuu

K
κ + 2Kuuηu

}
. (24)

The rif algorithm splits the symmetry system on the three expressions p1, p2, p3 of (11). For instance consider
p2 = 4K Kuu − 7K 2

u : we ask if this is invariant under the equivalence group action defined by Q (23). Begin with
the formal prolonged operator

Y(2) = η
∂

∂u
+ κ

∂

∂K
+ κ(u)

∂

∂Ku
+ κ(uu)

∂

∂Kuu

and apply the procedure of Sect. 3.2:

1. Apply Y(2) to p2:

Y(2) p2 = 4Kκ(uu) − 14Kuκ(u) + 4Kuuκ;
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210 I. Lisle, S.-L. T. Huang

2′. Reduce mod the reduced prolongation relations (24):

Y(2)
redpr p2 =

(
− 2

K
κ + ηu

)
(4K Kuu − 7K 2

u );

3′. Reduce mod p2, which gives 0.

Hence we conclude that classifying condition p2 = 0 (11) is invariant under the equivalence group action. In
fact, all three splittings, on p1, p2, p3 (11) test as invariant under the equivalence group defined by Q (23). For the
nonlinear heat equation, this post hoc tagging of case splits gives us confidence that the rif classification tree is of
good quality. Another example, where post hoc labelling points up a problem in a rif classification is given in Sect.
3.5 (Fig. 1).

Invariance checking can instead be used to guide rifsimp as it performs symmetry classification. When rif-
simp has a choice of expressions on which it might branch, typically some heuristic is applied: it might choose
the condition of least size, lowest order, etc. The theory of Sect. 3.2 offers another possibility: namely to prefer the
invariant candidate of least size, lowest order, etc. We give an example in Sect. 3.5 (Fig. 2).

Fig. 1 Classification tree for 1+1 Richards equation in potential form using vanilla rifsimpwith ranking {B} � {K } � {ξ, τ, η, φ}.
Pivots p1, . . . , p13 are case splitting conditions. Invariant case splits are shown in upright bold, non-invariant in italic. The dimension
of the symmetry group is also shown at each leaf

Fig. 2 Classification tree for 1+1 Richards equation in potential form, using SymmetricRifsimp to guide pivot selection. The pivot
numbering is not the same as in Fig. 1. Note that there are now three fewer cases. The dashed branch is inconsistent so is not counted
as a case
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3.4 Implementation

Many symmetry packages are available for computer-algebra systems. We chose to implement the invariant
symmetry classification method in Maple, utilising a suite of symmetry analysis functions added to the PDE-
tools package at Version 11, plus the rifsimp command, which implements Reid and Wittkopf’s rif algorithm
[16,22]. We have written a SymmetryClassification package, containing about 3000 lines of code, and
which has the following features:

– The differential equations E , their symmetry system S and equivalence system Q are stored in a Maple module
structure, since ultimately they are all attributes of E .

– Our package utilises the Maple PDEtools:-DeterminingPDE function to find S and adds another function
for finding Q.

– There is a function to tag a rifsimp symmetry classification post hoc with invariance information. Addition-
ally, a modified version of rifsimp (tentatively called SymmetricRifsimp) is provided with an additional
invariant pivot selection strategy that case splits on the smallest invariant pivot.

– There is a function analogous to DEtools[caseplot] for displaying classification trees tagged with invari-
ance information.

The package is available for download at http://ise.canberra.edu.au/ianlisle.

3.5 Example: 1+1 Richards

We now apply the invariance checking method to a more substantial example using the SymmetryClassifi-
cation package. Consider the 1+1 Richards equation in potential form

vx = u, vt = B(u)ux − K (u), B(u) �= 0,

where u, v are the functions of (x, t), and B(u), K (u) are the arbitrary elements. This system was classified by
Lisle and Reid [10] by a different method. The equivalence vector field is

Y = ξ
∂

∂x
+ τ

∂

∂t
+ η

∂

∂u
+ φ

∂

∂u
+ β

∂

∂ B
+ κ

∂

∂K
with ξ, τ, η, φ depending on (x, t, u, v) and β, κ on (x, t, u, v, B, K ).

The equivalence system Q as projected onto (u, B, K ) space is

ηuuu = 0, βB = 1
B β, βu = −Bηuu,

κK K = 0, κuK = 1
2ηuu, κuu = 0,

(25)

where η depends on u; β on (u, B); and κ on (u, K ). The symmetry system S is [10]:

τu = 0, τv = 0, τx = 0, ξu = 0, φu = 0,

B(φv + ξx − τt − ηu) − B ′η = 0,
(26)

φx + uφv − u(ξx + uξv) − η = 0,

φt − Kφv − u(ξt − K ξv) + K τt + K ′η − B(ηx + uηv) = 0.

Note that the η’s in (25,26) are distinct. From Q (25), we find there is a 7-parameter equivalence group action on
(u, B, K ) [10]. Applying rifsimp to S with ranking {B} � {K } � {ξ, τ, η, φ} to classify symmetries gives
a classification tree as shown in Fig. 1, tagged post hoc with invariance information. The pivots are fairly com-
plex, having up to 10 terms with derivatives up to 5th order. Despite this the labelling sweep takes only about
0.35 sec.

In Fig. 1 note that rifsimp has early on chosen a non-invariant case split (on p4). The left and right subtrees
below the p4 split are very similar, having cases with 3-, 4- and 5-dimensional symmetry groups. This is presum-
ably because these two subtrees are in fact connected by an equivalence transformation, leading to a repetition
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in structure. Similar comments apply to the p6 split. These bad splittings are because vanilla rifsimp takes no
account of the equivalence group.

We now compare these results with those obtained when SymmetricRifsimp is used to guide case splits
according to their invariance properties. With the same ranking, the revised classification tree is shown
in Fig. 2.

The invariant SymmetricRifsimp method only splits on a non-invariant pivot when no invariant pivot is
available. As a result it has rejected pivot p4 chosen by vanilla rifsimp in Fig. 1 and has deferred non-invariant
pivots almost down to the leaves of the tree. The repeated subtrees disappear and the number of cases drops by 3.
The performance penalty for the improved tree is modest: Maple timings gave 6.5 s for vanilla rifsimp and 7.5 s
for SymmetricRifsimp.

3.6 Completion of classification

The case splittings and symmetry group dimensions provided by a DRC method such as rif are only the first step
towards a complete group classification. Ultimately we wish to solve the classifying equations to find explicit forms
of the arbitrary elements, and to solve the other symmetry determining equations to find infinitesimals. This part of
the process is not strictly algorithmic, but it is not as daunting as may first appear. An invariant case splitting is rich
in symmetry because every equivalence operator is a symmetry.

As an example, consider again the 1+1 Richards equation of Sect. 3.5, but this time with a different ranking. We
still take {B} � {K } � {τ, ξ, φ, η}, with ties broken by order of derivative; but now we order lexicographically
by independent variable u < v < x < t then lexicographically by dependent variable η < φ < ξ < τ . Using the
invariant rifsimp algorithm of Sect. 3.3 gives a tree with 11 leaves and 8 pivots:

p1 = 2B B ′′ − 3B ′2,
p2 = B(2B B ′′ − 3B ′2)B(4) − 3B2 B ′′′2 + 16B B ′ B ′′B ′′′ − 6B ′3 B ′′′ − 6B ′′2(2B B ′′ − B ′2),
p3 = K ′′,
p4 = −2B(2B B ′′ − 3B ′2)(K ′′K (4) − K ′′′2),

+ (2B2 B ′′′ + 6B ′3 − 8B B ′ B ′′)K ′′K ′′′ + (−3B B ′ B ′′′ + 6B B ′′2−3B ′2 B ′′)K ′′2,
p5 = 2BK ′′′ − 3B ′K ′′,
p6 = −B2 K (4) + 4B B ′K ′′′ − 3B ′2 K ′′,
p7 = B(2BK ′′′ − 3B ′K ′′)K ′′K (5) − 4B2 K ′′K (4)2 + 2B2 K ′′′2 K (4),

+ 11B B ′K ′′K ′′′K (4) + 3B ′2 K ′′2 K (4) − 8B B ′K ′′′3 − 4B ′2 K ′′K ′′′2,
p8 = B ′.

Pivots p1–p7 test as invariant, while p8 is not. The classifying systems are:

Leaf 1: p1 �= 0, p2 �= 0, p3 �= 0,
Leaf 2: p1 �= 0, p2 �= 0, p3 = 0,
Leaf 3: p1 �= 0, p2 = 0, p3 �= 0, p4 �= 0,
Leaf 4: p1 �= 0, p2 = 0, p3 �= 0, p4 = 0,
Leaf 5: p1 �= 0, p2 = 0, p3 = 0,
Leaf 6: p1 = 0, p5 �= 0, p6 �= 0, p7 �= 0,
Leaf 7: p1 = 0, p5 �= 0, p6 �= 0, p7 = 0,
Leaf 8: p1 = 0, p5 �= 0, p6 = 0, p8 �= 0,
Leaf 9: p1 = 0, p5 �= 0, p6 = 0, p8 = 0,
Leaf 10: p1 = 0, p5 = 0, p8 �= 0,
Leaf 11: p1 = 0, p5 = 0, p8 = 0.
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Several of the splitting equations are very easy to solve; we indicate how to solve the more complex ones.
For this it is desirable to have the equivalence group explicitly, found by solving system Q (25). The action
on u is

u = αũ + β

γ ũ + δ

and the effect on B(u), K (u) is

B̃(ũ) = ρ

(γ ũ + δ)2 B

(
αũ + β

γ ũ + δ

)
, (27a)

K̃ (ũ) = λ(γ ũ + δ)K

(
αũ + β

γ ũ + δ

)
+ µũ + ε, (27b)

where α, β, γ, δ, ρ, λ, µ, ε are group parameters satisfying αδ − βγ = 1, ρ, λ �= 0.
Consider Leaf 3, where we must solve p2 = 0. From Q (25), this 4th order equation admits 4 symmetries. Rather

than directly substituting differential invariants as in [1], we find first integrals, of which there are 4. Eliminating
higher derivatives from these shows that B obeys the first-order equation

B ′

B
= 2c2 − 2c3u

c3u2 − 2(c2 + c4)u + c1
,

which is a quadrature. Similarly, for Leaf 4 one can solve p4 = 0 by finding a first integral and eliminating using
the above result for B; K satisfies the 3rd order equation

K ′′′

K ′′ = 3(c2 − c3u) + c5

c3u2 − 2(c2 + c4)u + c1
,

which again can be solved by quadratures. For Leaves 6–11, diffusivity B satisfies p1 = 0, so that B(u) =
1/(au + b)2. This is equivalent to B(u) = 1 by (27) so for Leaf 7 we can simplify p7 = 0 by substituting B = 1.
After finding two first integrals, K is found to satisfy the equation

K ′′′

K ′′ = 1

c1u + c3
,

which is easily solved. The full symmetry classification of the 1+1 Richards equation is shown in Table 1, where
parameters have been removed as much as possible by (27).

4 Discussion

The advantage of DRC methods is that they are completely algorithmic, using only differentiation and polynomial
algebra. By working at the level of determining equations our invariance checking is able to retain this desirable
property. We have no need to construct groups, or invariants of groups, nor even to construct vector fields by solving
determining equations.

Our method does not of its itself deal with the expression swell that can inhibit completion of a classification via
DRC, especially when the class of DEs being analysed has many degrees of freedom in its arbitrary elements and
its equivalence group. In this case there is little alternative other than to find the action of the equivalence group
explicitly and to apply a more geometric approach, such as described in [10,25]. Although somewhat against the
spirit of our method, our Maple code does make some concessions in this direction, by allowing the user to define
differential invariants of the equivalence group (if known) [10] and to specify these as ‘constraints’ on the arbitrary
elements. This can avert expression swell to a remarkable extent.

The choice of ranking used in applying DRC methods to a symmetry system also has a very strong effect on the
quality of the classification produced. Experience with our method indicates that an ill-chosen ranking can lead to
intractable expression swell and a poor quality tree, even when rifsimp is being guided towards invariant pivots.
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Table 1 Symmetry
classification (up to
real-valued equivalence
(27)) for the 1+1 Richards
equation in potential form

All equations admit the
symmetries X1 = ∂

∂x ,

X2 = ∂
∂t , X3 = ∂

∂v
; Cases 1,

3, 6 admit only these and are
not shown. Case numbering
is as per invariant
rifsimp. The symmetry
groups for Cases 10, 11 are
not shown: see [1, Sects.
4.2.4, 7.2.1] for details

Case 2 Generic nonlinear diffusion, linear convection
B(u) arbitrary, K (u) = 0 X4 = v ∂

∂v
+ x ∂

∂x + 2t ∂
∂t

Case 4 Nonlinear diffusion, nonlinear convection
a. B(u) = um , K (u) = un X4 = (m − n + 2)v ∂

∂v
+ (m − n + 1)x ∂

∂x
m �= 0,−2, n �= 0, 1 +(m − 2n + 2)t ∂

∂t + u ∂
∂u

b. B(u) = um , K (u) = u log u X4 = (m + 1)v ∂
∂v

+ (t + mx) ∂
∂x + mt ∂

∂t + u ∂
∂u

m �= 0,−2

c. B(u) = emu , K (u) = eu X4 = (x + (m − 1)v) ∂
∂v

+ (m − 1)x ∂
∂x

m �= 0 + (m − 2)t ∂
∂t

d. B(u) = eu , K (u) = u2 X4 = (v + x) ∂
∂v

+ (x + t) ∂
∂x + t ∂

∂t + ∂
∂u

e. B(u) = 1
1+u2 exp(m arctan u), X4 = ((m − n)v + x) ∂

∂v
+ (−v + (m − n)x) ∂

∂x

K (u) = √
1 + u2 exp(n arctan u) +(m − 2n)t ∂

∂t + (1 + u2) ∂
∂u

Case 5 Nonlinear diffusion, linear convection
a. B(u) = um , K (u) = 0 X4 = v ∂

∂v
+ x ∂

∂x + 2t ∂
∂t

m �= 0,−2 X5 = (m + 2)v ∂
∂v

+ (m + 1)x ∂
∂x+(m + 2)t ∂

∂t + u ∂
∂u

b. B(u) = eu , K (u) = 0 X4 = v ∂
∂v

+ x ∂
∂x + 2t ∂

∂t
X5 = (v + x) ∂

∂v
+ x ∂

∂x + t ∂
∂t + u ∂

∂u

Case 7 (includes 8, 9) Linear diffusion, nonlinear convection
a. B(u) = 1, K (u) = un X4 = (−n + 2)v ∂

∂v
+ (−n + 1)x ∂

∂x
n �= 0, 1, 2 +(−2n + 2)t ∂

∂t + u ∂
∂u

b. B(u) = 1, K (u) = u log u X4 = v ∂
∂v

+ t ∂
∂x + u ∂

∂u

c. B(u) = 1, K (u) = eu X4 = (x − v) ∂
∂v

− x ∂
∂x − 2 ∂

∂t + ∂
∂u

Case 10, 11 Linear diffusion, specific convection forms
a. B(u) = 1, K (u) = 0 (Linear heat equation)

b. B(u) = 1, K (u) = u2 (Burgers equation)

Conversely a very well-chosen ranking may lead to all pivots being invariant, in which case our method is merely
able to confirm this fact.

We emphasise that all the theory presented in this paper is directed towards verifying the usual infinitesimal cri-
terion of invariance of DEs [1, Sect. 4.3.1], [2, Sect. 2.3], [3, Sect. 5.3]. If the DEs are not locally solvable [2, Sect.
2.6], then it is possible that some symmetries are missed. Thus, case splits detected as invariant by our method are
definitely invariant; while those that fail the invariance test should be regarded as ‘not known to be invariant’. Similar
limitations apply if a 0th order case splitting equation arises, since infinitesimal methods are blocked in that case.

Regardless of these (usual) caveats, the methods described in this paper are a useful adjunct to algorithmic
symmetry classification methods using DRC. For DEs containing a few arbitrary functions of one variable,
such DRC methods can be very successful. Our invariance checking can be used to gauge the quality of a clas-
sification produced using rifsimp and to guide it towards improved classifications. Because of the way our
calculations are organised, the computational cost is modest so long as expression swell is not overwhelming
rifsimp.

Finally we remark that the problem of finding conservation laws for a class of DEs has many features in common
with the symmetry classification problem. The equivalence group acts in a similar way (see e.g. [36]) and it should
be possible to adapt our method to this case.
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